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Abstract

In many social science applications, a process of interest occuring in one unit has
consequences for the outcomes of other units, a phenomenon known as interference.
Current methods to analyze interference or spillovers from a causal inference perspec-
tive assume that the researcher knows the relevant pathways through which interference
occurs and can use that information to identify which units are plausibly exposed to
treatment. In most cases, this assumption is not justifiable, which means researchers
must make modeling decisions that are only indirectly informed by theory. Moreover,
the discipline currently lacks standards to evaluate the appropriateness of alternative
operationalizations. Focusing on the case of converting distance metrics into treatment
exposures, this paper suggests approaching the problem as a model selection task. Re-
searchers can use the desired performance criterion, algorithm, and selection strategy
to choose the most appropriate model of interference given the data and estimation tar-
get. This paper focuses on inverse probability weighting estimators, cross-validation,
and the lasso family of methods, but the ideas are general enough to fit researchers’
theoretical and analytical needs. I illustrate the effectiveness of this approach an ap-
plication to a study of voter registration irregularities in Ghana and simulations.
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1 Introduction

In the causal inference framework, interference or spillovers occur when a unit’s potential

outcome depends on the treatment assignment of other units (Cox 1958). This is a violation

of the stable unit treatment value assumption (SUTVA) used to justify the implementation

of common design-based estimators (Rubin 1990). Some scholarship aims at detecting in-

terference (Aronow 2012) or recovering the ability to identify causal effects in its presence

(Sävje, Aronow, and Hudgens 2019). However, in the social sciences, interference can be a

phenomenon of interest by itself. For example, research on electoral fraud suggests that the

presence of election observers reduces irregularities in treated units, but increases them in

nearby localities (Ichino and Schündeln 2012; Asunka et al. 2017).

Detecting and estimating interference in the causal inference framework is an active research

agenda (see Halloran and Hudgens 2016; Aronow et al. 2021; Ogburn and VanderWeele 2014

for overviews). Current approaches assume the researcher knows the pathway(s) through

which interference occurs. For example, Aronow and Samii (2017) propose a general estima-

tor of the average unit-level causal effect of experiencing different exposure regimes, which

requires knowledge of what units are exposed to treatment.1 Similarly, Hudgens and Hal-

loran (2008) develop estimators for several quantities of interest under the assumption that

interference occurs within, but not across, groups or strata. Beyond estimation, Bowers,

Fredrickson, and Panagopoulos (2013) introduce a framework to test hypotheses of coun-

terfactual causal effects under a theoretically informed model of interference. As with any

application of mathematical models, this approach assumes a correct model specification.2

These type of assumptions are not verifiable, but researchers can justify them with research

designs meant to capture interference, such as multilevel experiments (Sinclair, McConnell,
1I use “exposure to treatment” as a shorthand for “being exposed to a treated unit.” This means we

suspect that the outcome of the unit in question may be affected by the treatment status of those it is
exposed to.

2See also Toulis and Kao (2013), Athey, Eckles, and Imbens (2018), and Base, Feller, and Toulis (2019)
for alternative approaches with similar assumptions.
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and Green 2012), saturation designs (Baird et al. 2018), or natural experiments (Keele and

Titiunik 2018).

In many social science applications, these research designs are not feasible. If the known

pathways assumption is not met, the resulting estimates may be biased (Aronow et al. 2021).

This paper focuses on estimating interference effects when researchers’ domain expertise

suggests a pathway for interference, but does not indicate how units connect to each other.

For example, we may know units’ geographic location, but not how a distant treated unit

interferes with the outcome of others. To make a statement about what units are exposed

to treatment, we must convert observed pairwise distances into exposures. This conversion

is a decision that follows from theory, but is not directly informed by it, and the discipline

currently lacks standards to determine whether a specific conversion is more appropriate

than alternative operationalizations.

I argue that we can approach this challenge as a model selection task. We can think of

alternative conversions from pairwise distances to exposures as a set of alternative models,

or variables within a model, among which the researcher can select the one that best satisfies

a performance criterion, given an algorithm and selection strategy of choice. While this

paper focuses primarily on inverse probability weighted difference in means (Aronow and

Middleton 2013; Aronow and Samii 2017), cross-validation, and the lasso-family methods

for model selection (see Ratkovic and Tingley 2017 for an overview), I propose a general

protocol that researchers can adapt to fit their theoretical and estimation needs.

The choice of model selection strategy depends on two decisions. First, the researcher must

decide whether the purpose is to estimate categorical (e.g. Aronow and Samii 2017) or

marginal exposure effects (e.g. Hudgens and Halloran 2008). Second, whether the task is

to estimate a single global effect or multiple local effects at different ranges. I illustrate

how to navigate these decisions with a reanalysis of an experiment dedsigned to capture the

spillover effect of election observers on voter registration irregularities in Ghana (Ichino and
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Schündeln 2012), as well as with simulations of hypothetical experiments on a road network

in the same country (based on Bowers et al. 2018).

The main contribution of this paper is to develop standards to assist researchers in making in-

formed decisions while modeling interference in experiments and observational studies when

the known pathways assumption is not satisfied by design. The model selection approach

described here is helpful in identifying the most appropriate model among alternatives stem-

ming from one or more theoretically relevant pathways. It extends recent work on analyzing

interference when the assumption of known pathways is not sustainable. For example, Egami

(2020) develops sensitivity analysis for interference in the presence of unobserved networks,

and Sävje (2019) replaces the assumption of known exposure in Aronow and Samii (2017)

with the weaker condition of sufficiently controlled (and hence estimable) specification errors.

It also expands on recent literature using statistical learning to improve causal inference (see

Blakely et al. 2019 for a general treatment), especially in the context of using supervised

learning model selection algorithms prior to estimation to increase efficiency (e.g. Belloni,

Chernozhukov, and Hansen 2013; Bloniarz et al. 2016).

2 Causal Inference Approaches to Interference

2.1 Setting

This section follows Aronow et al. (2021) closely. Consider an experiment conducted in

a sample of N units indexed by i = {1, 2, ..., N}. Let Z denote a transposed treatment

assignment vector so that Z = {Z1, ..., ZN}⊤. For simplicity, assume a binary treatment

variable, which implies unit i’s possible treatment status is Zi = {0, 1}. The logic in this

paper still applies to multiple and continuous treatments. Based on the experimental design,

the probability of treatment assignment Pr(Z = z) is known for all possible treatment

vectors z ∈ {0, 1}N .
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Assuming no interference, unit i’s potential outcome Yi(z) depends on its treatment as-

signment only, which means its observed outcome is Yi = ziYi(1) + (1 − zi)Yi(0), where

zi is the observed treatment status of unit i. To make the absence of interference more

explicit, let z−i and z′
−i denote two different treatment vectors that exclude unit i’s treat-

ment status. If potential outcomes depend on treatment assignment only, we can claim that

Yi(zi, z−i) = Yi(zi, z
′
−i).

Interference implies that Yi(zi, z−i) ̸= Yi(zi, z
′
−i), so we need to account for the treatment

status of other units to fully characterize unit i’s potential outcome. With a binary treat-

ment, accounting for every unit’s treatment status leads unit i to have 2N possible potential

outcomes. Since this is intractable in most applications, researchers need to impose some

structure. When manipulation is feasible, researchers can implement saturation (Baird et al.

2018) or multilevel (Sinclair, McConnell, and Green 2012) designs so that both treatment

assignment and exposure to treatment are known. Natural experiments can also provide

such a setting (e.g. Keele and Titiunik 2018). In these cases, the researcher can assume that

interference occurs only within the structure imposed by the research design.3 When manip-

ulation is not feasible, structure can come from assumptions informed by theory or domain

expertise. For example, we could assume that interference is more likely among legislators

with similar ideology scores (Coppock 2014), or that the presence of election observers affects

electoral irregularities within a given distance radius (Ichino and Schündeln 2012).

Different assumptions about the nature of interference inform different empirical strategies.

The literature on causal inference considers two alternative approaches. First, If the re-

searcher observes how units connect with each other in a network and assumes that said

network is sufficient to capture all relevant information about how treatments propagate,

then they can estimate interference as the contrast across different exposures. Second, if the

researcher is willing to assume that interference happens within observed groups only, they
3Even with a research design meant to capture interference, this is still an assumption that may not be

credibly justified in some applications.

5



can estimate marginal a marginal effect of being exposed to treatment within the group.

This would capture the effect of treatment saturation or the strength of exposure.

2.2 Interference as contrast across exposures

Consider the case of estimating interference in randomized experiments when the researcher

knows how units connect with each other. Aronow and Samii (2017) introduce the concept of

exposure mapping to characterize all the possible treatment-exposure combinations that may

emerge depending on what the researcher assumes about interference. Under this setting,

Yi(dk) denotes the potential outcome of unit i under exposure k.4 With this, we can express

the unit-level average exposure effect as

τ(dk, dk′) = 1
N

N∑
i=1

Yi(dk) − 1
N

N∑
i=1

Yi(dk′) (1)

which is the difference in means between the potential outcomes under exposures k and k′,

with k′ denoting any exposure different from k. For example, if we want to express the effect

of being exposed to treatment among control units, we would write

τ(d01, d00) = 1
N

N∑
i=1

Yi(d01) − 1
N

N∑
i=1

Yi(d00) (2)

with Yi(d01) denoting the potential outcome of unit i when assigned to control and exposed

to treatment, and Yi(d00) denoting the potential outcome of i when assigned to control and

not exposed to treatment.

Per the fundamental problem of causal inference (Holland 1986), we cannot observe unit i’s

potential outcome in more than one exposure at a time. Moreover, if treatment assignment

does not account for network structure, the probability of experiencing different exposures
4A different treatment status of unit i implies a different exposure. See Aronow and Samii (2017) for an

extensive formalization of this approach.
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varies across units. Aronow and Samii (2017) propose a Horvitz-Thompson inverse proba-

bility estimator of τ(dk, dk′) that accounts for both issues.

τ̂HT (dk, dk′) = 1
N

[
N∑

i=1
I(Di = dk) Yi

πi(dk) −
N∑

i=1
I(Di = dk′) Yi

πi(dk′)

]
(3)

This is the difference in inverse probability weighted means between two exposures, with

I(Di = dk) denoting the units for which we observe exposure k, and πi(dk) denoting the

probability of unit i experiencing exposure k. The notation is analogous for k′. For a

randomized experiment, πi(dk) is the expected proportion of treatment assignments that

induce unit i to experience exposure k, which can be computed exactly in relatively small

samples or approximated through simulation otherwise.

See Aronow and Samii (2017) for a subsequent discussion of asymptotic properties, imple-

mentation, and variance estimation. For the purposes of this paper, the important part is

that the estimator τ̂HT (dk, dk′) is unbiased under the known pathways assumption. There-

fore, when this assumption is not satisfied by design, any operationalization of interference,

even if informed by theory, may inadvertently introduce bias. From a model selection per-

spective, the task to find an operationalization that minimizes this bias in expectation.

2.3 Stratified interference

Another way to impose structure under interference is to assume that it occurs only within

observed groups or strata. For example, Get Out the Vote campaigns may affect the voting

behavior of untreated individuals living in treated households (Nickerson 2008), or that of

individuals in other households in the neighborhood (Sinclair, McConnell, and Green 2012).

With this restriction, unit i does not have 2N different potential outcomes, but rather 2ng ,

with ng denoting the number of units in group g.5 Capturing exposure-specific effects under
5This notation is different from the one in Hudgens and Halloran (2008). They denote the group as i and

the individual as j.
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this assumption may still be intractable in applications with large groups, so Hudgens and

Halloran (2008) focus on marginal exposure effects instead. These include, for example, the

effect of one additional treated unit within the group, or that of being exposed to different

proportions of treated units within the group.

They define four quantities of interest at the individual, group, and population level: the

direct, indirect, total, and overall causal effects. For simplicity, I only describe individual

level effects.6 The average direct causal effect for individual i in group g is

τD
ig (ψ) = Y ig(0;ψ) − Y ig(1;ψ) (4)

which is the difference in means between treatment conditions, holding exposure regime ψ

constant. The individual average indirect causal effect is

τ I
ij(ϕ, ψ) = Y ij(0;ϕ) − Y ij(0;ψ) (5)

which is the difference in means between exposures regimes ϕ and ψ under the control

condition. The individual average total causal effect is

τT
ig(ϕ, ψ) = Y ig(0;ϕ) − Y ig(1;ψ) (6)

which is the same as the sum of direct and indirect effects on individual i. Finally, the

individual average overall causal effect is:

τO
ig (ϕ, ψ) = Y ig(ϕ) − Y ig(ψ) (7)

6In general, the group and population level causal effects are the aggregation of their individual level
counterparts. See Hudgens and Halloran (2008) for details.
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which is equivalent to the difference in means across two different treatment regimes.

Under Bernoulli random assignment with probability ψ,7 an unbiased estimator of unit i’s

outcome in group g under treatment assignment z = {0, 1} and exposure regime ψ is

Ŷg(z;ψ) =
∑ng

i=1 Yig(Zg)I[Zig = z]∑ng

i=1 I[Zig = z] (8)

which is the average of observed outcomes in a group under the same treatment condition and

treatment regime Zg. This informs the population-level estimators of direct, indirect, total,

and overall causal effects. For example, the estimator for the population average indirect

effect is τ̂ I(ϕ, ψ) = Ŷ (0;ϕ) − Ŷ (0;ψ).

These estimators are unbiased under the partial interference assumption, which states that

unit i’s potential outcomes depend only on the treatment assignment of units within, but

not across, groups (Sobel 2006). The assumption of stratified interference, which states that

the potential outcomes of unit i depend on the proportion or number of treated units in

group g, but not on which units within the group are treated, is sufficient but not necessary

to identify causal effects.8

Aronow et al. (2021) show that violations of partial interference introduce bias in marginal

exposure effect estimates. This violation is plausible in social science settings since individ-

uals can interact through unobserved networks. Egami (2020) considers sensitivity analysis

for the case in which the researcher observes a causally relevant network but has concerns

over whether interaction in unobserved networks may violate partial interference. For ex-

ample, the researcher may observe how treatments propagate in online social networks but

may not be able to account for treatment propagation through face-to-face interaction.
7Hudgens and Halloran (2008) suggest that the estimator is unbiased with any randomization schedule,

Sävje, Aronow, and Hudgens (2019) clarify that this is only true for Bernoulli random assignment.
8However, Hudgens and Halloran (2008) show that stratified interference is necessary for variance esti-

mation.
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More generally, bias may emerge in this setting because groups themselves are not properly

defined. In experiments with individuals as the unit of analysis, the challenge is to identify

the right reference group. For example, in an experiment that assigns treatments to individ-

uals in their households, interference can occur within a household, or across households in

a neighborhood. In experiments with administrative units, the task is to identify an upper

bound that determines which localities can be considered part of the same group. This paper

focuses on the latter case.

3 A Model Selection Approach

Both causal inference approaches to interference described in the previous section assume

that the researcher knows and fully observes the pathway(s) through which treatments prop-

agate. This is analogous to assuming no omitted variable bias, as it implies that all causally

relevant networks are observed. An alternative way to think about violations of the known

pathways assumption is to conceive an observed network as an approximation of the true,

unobserved causally relevant network. From this perspective, the task is to ensure that the

pathway of choice approximates the true network as close as possible. Previous work pro-

vides tools to assess the influence of unobserved networks in the form of sensitivity analysis

(Egami 2020). Therefore, the remaining task is to develop tools to determine whether the

operationalization of a chosen pathway is appropriate relative to alternatives.

Choosing the appropriate operationalization is most relevant in the case where theory or

domain expertise suggest a causally relevant pathway, but they imply many alternative

operationalizations for it. For example, if we suspect that assigning election observers to some

localities affects voter registration irregularities nearby (Ichino and Schündeln 2012; Asunka

et al. 2017), we need a statement of which localities are indirectly exposed to the intervention.

If we believe that units’ outcomes are affected by the treatment assignment of other within
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a distance range, then we have multiple options for its upper bound.9 This is analogous

to finding the appropriate reference group. For example, research on the spillover effects of

Get Out the Vote interventions suggests that treated individuals may affect the behavior of

others within their household or neighborhood (Nickerson 2008; Sinclair, McConnell, and

Green 2012). In this context, researchers interested in minimizing bias have incentives to

choose the right reference group.

In some applications, as in the case of choosing between household or neighborhood effects,

the range of plausible operationalizations is limited and the cost of analyzing all alternatives

is minimal. In others, as in the case of choosing an appropriate distance threshold, analyzing

all plausible operationalizations can become restrictive. Even if the researcher can estimate

all the alternatives, they are left with the question of which result is a better approximation

to the true, unobserved quantity of interest.

The protocol I propose requires the researcher to express these alternative operationalizations

as a function of one or more parameters. For example, Keele and Titiunik (2018) study

interference in the context of a geographic natural experiment in which the outcome of

control households depends on the density of treated units within a distance threshold.10 In

their case, density and distance are parameters that govern different model specifications.

While in the context of a geographic natural experiment the number of combinations to

report is limited by the context, in other applications researchers may not be able to identify

a discrete range of parameter values.

Expressing plausible operationalizations of interference as a function of one or more param-

eters allows researchers to apply model selection systematically. Table 1 summarizes the

proposed model selection protocol. The first step is to identify the causally relevant path-
9An alternative approach is to assume that interference effects decrease as a function of distance. This

overcomes the challenge of identifying a threshold, but requires further modeling assumptions (e.g. Bowers,
Fredrickson, and Panagopoulos 2013) or granular enough data to characterize the effect of point interventions
as a function of distance (Aronow, Samii, and Wang 2020).

10They actually consider an application in which control units can interfere with the outcome of those
treated, but I reverse the language for the sake of clarity.
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ways through which interference occurs, this is a decision that comes from theory, domain

expertise, or knowledge of the research design or data generating process.

Second, the researcher expresses the chosen pathway as pairwise distances between units

along a distance metric. These pairwise distances are straightforward when the theoretically

relevant pathway is a continuous measure indicating units’ placement in multidimensional

space (e.g. location or ideology scores), in which case we can express distance as the difference

between the values of any two units. When pathways indicate how units connect to each

other in a discrete manner, as in a peer network, the distance can be expressed as the

geodesic (the lowest number of edges connecting two nodes). In the context of choosing

the right reference group, pairwise distances indicate whether the units belong to the same

group.

As an illustration, consider the case of converting pairwise distances into binary exposures.

Let W ∈ [0,+∞) be an M × T distance matrix where M is the number plausibly exposed

units and T is the number of treated units.

W =



∞ w12 · · · w1T

w21 ∞ · · · w2T

... ... . . .

wM1 wM2 · · · ∞


(9)

The dimensions of W depend on the assumptions we make about the nature of interference.

If exposure to treatment affects both treated and control units, then M = N , if only control

units can be affected by the treatment assignment of others, then M = (N − T ).

The task is to convert the matrix W into a matrix K of binary indicators of whether unit

i can be considered as exposed to treated unit j. Let κ denote a distance threshold so that
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1. Identify relevant pathway(s) through which interference occurs
2. Express the pathway as pairwise distances between (plausibly) exposed and treated

units along a distance metric
3. Use pairwise distances to inform plausible models of interference
4. Apply model selection algorithm of choice
5. Estimate interference using the model(s) that satisfy the algorithm’s criteria

Table 1: A model selection protocol for interference

kij =


1 if wij ≤ κ

0 otherwise
(10)

When kij = 1, we say that unit i is exposed to unit j. With this information, the researcher

can compute the explanatory variables of interest based on the desired estimation target. If

the goal is to estimate categorical exposure effects, then they should record whether unit i

is exposed to at least one treated unit. If the goal is marginal exposure effects or strength

of exposure, the variables should indicate the number or proportion of treated units i is

exposed to.

The third step is to use the information about pairwise distances to identify multiple plausible

models of interference. Different values of κ imply different versions of K. Once again, this

decision depends on the estimation target. If the researcher seeks to identify a single global

effect, then different values of κ inform alternative upper bounds, and hence different models,

for which units can be considered as exposed to treatment. For example, Paluck, Shepherd,

and Aronow (2016) argue that the effects of anti-conflict interventions in a school spread to

those students who spend time with treated students. However, the intervention can also

reach those who spend time with those who spend time with treated students. In this case,

κ can record network degrees as plausible upper bounds for interference.11

11Aronow and Samii (2017) overcome this challenge theoretically by allowing an arbitrary number of
exposure mappings. In their approach, the possibility of second degree effects implies an increase in the
number of distinct exposures.
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If the goal is to identify local exposure effects at different distance ranges, then different

values of κ inform the construction of different variables among which an algorithm will

select to identify the most appropriate model. For example, Ichino and Schündeln (2012)

estimate the marginal effect of election observer visits on voter registration irregularities

within the 0-5 km and 5-10 km distance ranges. From a model selection perspective, each

one of this brackets is a different variable that responds to a different value of κ.

In the fourth step, the researcher applies the model or variable selection algorithm of choice.

In this paper, I focus on supervised learning model selection algorithms because they allow

researchers to entertain the possibility of multiple, equivalent models. However, researchers

can implement any model selection procedure they prefer. For example, Bayesian approaches

to model selection also accomplish the goal of incorporating uncertainty around what can

be considered the most appropriate model (Hollenbach and Montgomery 2020).

As in the previous step, the choice of algorithm depends on the estimation target. Off-the-

shelf variable selection algorithms are appropriate when the task is to select among multiple

plausible local exposure effects. This paper focuses on the lasso-family of algorithms (see

Ratkovic and Tingley 2017 for a review) since they are a straightforward extension of the

regression models that researchers usually estimate in this setting. However, within the

universe of supervised learning, the researcher may also use tree-based methods (Breiman

2001; Bleich et al. 2014; Speiser et al. 2019) or any other feature selection algorithm of

choice.12

In this case, when the target is a single global effect, different values of κ inform a different

version of the estimator, so the algorithm is the estimator itself, and the research can select

the most appropriate model by searching over a range of values for κ using the resampling

strategy and performance criterion of choice. For regression, a common strategy is to com-
12One caveat of using supervised learning model selection, or any other approach that relies on resampling,

is that researchers should identify plausible operationalizations of interference before implementing these
methods. Otherwise, they risk breaking the underlying network structure in the data.
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pute mean squared error via k-fold cross-validation (Hastie, Tibshirani, and Friedman 2009).

In this context, κ is a hyper-parameter, which value the researcher can tune searching over

a manual grid. If the application suggests a computationally restrictive grid, random search

is also an option (Bergstra and Bengio 2021).

The final step is to estimate the most appropriate model(s) suggested by the model selection

procedure. The researcher can use the estimator of choice, including those discussed in the

previous two sub-sections. In the case of supervised learning approaches, the protocol may

suggest multiple models that satisfy the performance criteria. For example, several models

can be within one standard deviation from the model that minimizes mean squared error,

in which case the researcher can consider all of them as plausible definitions of nearby.13

4 Application

4.1 Election observers and voting registration irregularities in

Ghana

This section illustrates the usefulness of the model selection approach to interference by

reanalyzing an experiment on the spillover effect of election observers on voter registration

irregularities in Ghana (Ichino and Schündeln 2012). Table 2 summarizes the two-stage

research design. Before randomization, the authors group constituencies (legislative districts)

into blocks according to the difference in vote shares between the two main parties in the

country in the 2004 legislative election. At the first stage, one constituency per block was

randomly assigned to treatment and two were assigned to control. In the second stage,

roughly 25% of the electoral areas (ELAs), subdivisions of constituencies, were assigned to

receive the visit of an election registration observer in the wake of the 2008 election.
13When supervised learning algorithms use current data to predict new data, the common practice to

reduce overfitting is to select the model with the highest mean squared error within one standard deviation
from the minimum. In the context of a model selection approach to interference, this usually translates into
choosing the most parsimonious model.
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Constituencies Electoral areas (ELAs) Observations
Control Control 592
Treatment Control 199
Treatment Treatment 77

Table 2: Research design in Ichino and Schündeln (2012)
Note: Two-stage design. Constituencies are randomly assigned to treatment and control, then ELAs
within treatment constituencies are randomly assigned to the visit of an election observer.

The main finding in this experiment is that election observers do not deter but rather displace

irregularities, one additional ELA assigned to treatment within 5 kilometers leads to a 3%

increase in irregularities, measured as the percent change in voter registration between 2004

and 2008, in control ELAs.14 The effect is indistinguishable from zero for the number of

ELAs assigned to treatment in the 5-10 kilometer range.

The exercise from a model selection perspective is to determine whether the proposed pro-

tocol can recover the same substantive findings as an experiment designed to capture inter-

ference. I extend the original analysis using different 5 kilometer intervals to illustrate the

case of multiple local marginal effects.

4.2 Lasso model selection

Assume that the researcher believes that geographic distance is a relevant distance metric

and that election observers may have different effects as distance increases. To capture

this, one may choose to analyze effects separately at increasing discrete distance ranges. To

reproduce this, I count the number ELAs assigned to treatment at 5 kilometer intervals up

to 50 kilometers. This translates to 10 variables or predictors among which to select.

I select among these predictors using lasso-family algorithms. The logic of lasso (Least

Absolute Shrinkage and Selection Operator) methods is to add a penalty term to the the ob-

jective function of OLS regression, which is the residual sum of squares (see Tibshirani 1996;

Ratkovic and Tingley 2017 for mathematical details). As the penalty term increases, the
14This is the intent-to-treat effect, which is the focus of this paper, the local average treatment effect for

those ELAs that were visited by an election observer is similar. See Ichino and Schündeln (2012) for details.
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resulting regression coefficients shrink toward zero, a coefficient that reaches zero is excluded

from the estimation step. The size of the penalty term is determined by a tuning parameter

λ, which for the frequentist lasso is tuned via cross-validation or another resampling strategy.

A shortcoming of the standard lasso is that it tends to select irrelevant predictors that

correlate with relevant predictors. Figure 1 shows the correlation matrix for the variables

involved in the reanalysis. Many predictors correlate positively with each other, which may

create complications for variable selection in the lasso. Subsequent refinements to the lasso

attempt to minimize the tendency to over-select predictors (see Ratkovic and Tingley 2017

for a review).

In this application, I focus on the following variants of the lasso:

1. Lasso (Tibshirani 1996)

2. Adaptive lasso (Zou 2006)

3. Lasso + OLS (Belloni and Chernozhukov 2013)

4. LASSOplus (Ratkovic and Tingley 2017)

The logic of the original lasso is described above. The adaptive lasso introduces more flex-

ibility by allowing predictor-specific weights, resulting in a penalty term that varies across

predictors (Zou 2006). Following standard practice, I weight each predictor by the multi-

plicative inverse of the absolute value of its coefficient in a multivariate OLS regression of

the outcome against the predictors, so for predictor p the weight is 1/|βp|.

The LASSO + OLS variant seeks to improve upon the initial lasso fit by excluding non-

zero predictors that exceed a threshold. In this application, I focus on the goodness of fit

thresholding (also knows as OLS post-fit Lasso) procedure proposed by Belloni and Cher-

nozhukov (2013), which consists of fitting an OLS regression for all the subsets of the model

suggested by the lasso, and then choosing the subset with a residual variance that resembles

the residual variance of the suggested lasso fit.
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Figure 1: Correlation matrix for outcome and predictors
Note: The outcome is the 2004-2008 percent change in voter registration. The predictors count
the number of ELAs assigned to treatment in the corresponding range. Numbers indicate the
Pearson correlation coefficient between the intersecting variables. Darker shades of gray indicate
more extreme values.

Lastly, the LASSOplus proposed by Ratkovic and Tingley (2017) is a Bayesian procedure

that streamlines model selection and estimation. This method has three advantages. First,

as a Bayesian method, it produces credible intervals analogous to the confidence intervals

obtained by OLS regression, so it does not need an additional step for estimation like the

frequentist variants do. The second advantage of LASSOplus is that it is a thresholding

function that zeroes out small coefficients. Bayesian variants of the lasso tend to have better

predictive performance (Casella et al. 2010), but are not sparse estimators in the sense

that they do not automatically zero-out coefficients. Third, unlike standard lasso methods,

LASSOplus can incorporate prior knowledge about the data generating process, which in

the context of this paper translates to research design features. For example, LASSOplus

can automatically incorporate the blocked structure of the Ichino and Schündeln (2012)

experiment and adjust the posterior distribution accordingly.

For the frequentist variants of the lasso (standard, adaptive, and lasso + OLS), I tune
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λ via 10-fold cross-validation using the glmnet R package and choose the most generous

model among those implied by the range within one standard deviation from the value of

λ that minimizes RMSE.15 I follow the default parameters of the sparsereg R package for

LASSOplus, which estimates the model via MCMC via Gibbs sampling with 200 burn-in

iterations, 200 posterior samples, and thinning every 10 samples.16

4.3 Results

Figure 2 summarizes the variables selected by each lasso variant and the resulting estimates

from the selected models. Figures A1-B1 in the appendix show additional details for the fre-

quentist lasso variants. The horizontal axis lists every variable selected by the corresponding

lasso variant. For reference, the top frame denotes the original model selection in Ichino and

Schündeln (2012), including the number of ELAs assigned to treatment within 0-5 kilometers

and 5-10 kilometers, of which only the first has a non-zero effect. All the frequentist variants

of the lasso correctly select this predictor, but also overselect every other predictor. This

pattern emerges because continuous predictors tend to correlate with each other, and the

lasso chooses to penalize one heavily and to leave the other untouched. LASSOplus, in turn,

correctly selects the number of ELAs assigned to treatment within 0-5 kilometers as the only

non-zero predictor, which aligns with the original findings.

Figure 2 also shows estimates from the models suggested by each lasso variant in separate

frames. The first frame reproduces the original result in Ichino and Schündeln (2012). For

the frequentist variants, estimation occurs after model selection following the original speci-

fication, which includes block fixed effects, a control for whether an ELA is in a treatment

constituency, and clustered standard errors at the block level. Because in the frequentist

variants of the lasso estimation occurs after selection, I compute 97.5% confidence intervals

to control for the possibility of false coverage-statement rate (Benjamini and Yekutieli 2005).
15In this case, more generous implies selecting the model with the most predictors.
16These are the default parameters in the sparsereg package. It is a relatively small yet, as the results

sub-section shows, sufficient number of iterations to yield satisfactory results.
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Although all of the frequentist variants select irrelevant predictors, the estimation for each

returns an effect similar to the original for the number of ELAs assigned to treatment in the

0-5 kilometer range. The remaining estimates are indistinguishable from zero, which still

aligns with the conclusion that spillover effects do not occur beyond five kilometers.

For LASSOplus, the point estimate is the posterior mean of the same model used for variable

selection, which includes the original research design features as prior information. Unlike

the frequentist variants, LASSOplus only selects the number of ELAs assigned to treatment

in the 0-5 kilometer range, and while the estimate is smaller than the original, the 95%

credible interval is narrower than the confidence interval in the frequentist counterparts.

To summarize, both the frequentist variants of the lasso and LASSOplus arrive at the same

substantive conclusion as an experiment intended to capture interference. As documented in

previous work, the frequentist variants tend to select irrelevant effects that correlate with true

non-zero effects (Ratkovic and Tingley 2017), a problem that LASSOplus overcomes in this

application. Frequentist lasso-family methods arrive at the correct substantive conclusion

despite over-selecting because, under regular conditions, the frequentist lasso and its variants

satisfy the oracle inequality, which states that, asymptotically, the lasso selects at least a

subset of the true model (Candès 2006).17 Therefore, both frequentist and Bayesian sparse

estimation models are suitable for a model selection approach to interference.

5 Simulation

5.1 Setup

The previous section applies the model selection protocol to a specific case. This simulation

study illustrates its properties more generally in the context of estimating interference as

the contrast across exposures, with the goal of identifying a single global effect.
17The oracle inequality exists in contrast with the oracle property, which requires a variable selection

procedure to asymptotically select the right model (Fan and Li 2001).
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Figure 2: Estimates for the marginal effect of the number of ELAs assiged to
treatment within selected distance ranges on voter registration irregularities
Note: Each frame denotes a different model with the variables selected by the corresponding model
selection procedure. The first frame reproduces the original results. For the frequentist variants of
lasso, the estimates come from post-selection OLS regression with block fixed effects and a control
for whether an ELA is in a treatment constituency, with bars representing 97.5% false coverage-
statement rate adjusted confidence intervals from block clustered standard errors. For LASSOplus,
the point estimate is the posterior mean and the bars denote the 95% credible interval.
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Consider a hypothetical experiment conducted in a network. I use the network in Bowers et

al. (2018) since it reflects a realistic layout. Each node in this network is an ELA in Ghana

(N = 868). Edges in this network denote whether a direct road connects two areas. The

median number of direct connections is 22 (mean: 38, standard deviation: 41).

Bowers et al. (2018) focus on the case where interference occurs between adjacent nodes

only. In this simulation exercise, interference may also occur at higher degrees. Therefore,

the distance metric is the geodesic, or the number of edges in the shortest path between two

nodes.

Z is a treatment assignment vector. Zi ∼ Bernoulli(α), which implies two possible treatment

conditions Zi = {0, 1}, which I refer to as control and treatment, respectively. One of the

main conclusions in Bowers et al. (2018) is that experiments have higher power to detect

interference when the proportion of units assigned to treatment is smaller than the usual

even split across conditions. With this in mind, I set α ∈ [0.1, 0.4]. Figure 3 shows one

realization of the treatment assignment in the network with α = 0.1.

Let Y (d00) be the vector of potential outcomes under control and without exposure, Y (d10)

under treatment without exposure, Y (d01) under control with exposure, and Y (d11) un-

der both treatment and exposure. I assume Y (d00) ∼ U(0, 1) and Y (d10) = Y (d01) =

Y (d11) = λY (d00) with the multiplicative treatment effect λ ∈ {0.26, 0.63}, which is about

one and two standard deviations of the uniform distribution of the outcome, respectively.

Under this setup, we can restrict our attention the effect of being exposed to treatment

within control units, which is the contrast between Y (d00) and Y (d01).

To capture the idea that interference may occur within different distance ranges, I set κ =

{1, 2, 3} as the true interference upper bound. For example, with κ = 2 a node is exposed

to treatment if it is within two or fewer edges away from a treated unit. Within this range,

a node is infected with probability γ ∈ [0.5, 1]. Infected units exhibit the outcome under

exposure Y (d01), otherwise they exhibit Y (d00). This reflects the scenario where treatments
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Figure 3: Hypothetical experiment in a road network in Ghana
Note: Colors denote treatment assignment. Units are assigned to treatment with probability α =
0.1.

propagate at different rates.

For each combination of the parameters α, λ, κ, and γ, I consider plausible upper bounds

k = {1, 2, 3, 4}. k is the researcher’s guess of what the value of the true κ may be, with

higher values reflecting a broader range within which control units are considered exposed

to treatment. For each value of k, I consider the inverse probability weighted difference in

means described in Equation 3 as both the algorithm and the estimator. I use 5-fold cross

validation to compute the root mean squared error (RMSE) for each model and choose the

one with the largest RMSE within one standard deviation of the mean. I denote the value

of k in the chosen model as k̄, and estimate the corresponding model.18

I repeat this process 1,000 times for each parameter combination and compare the protocol’s

performance with an oracle that knows the value of κ ahead of time but does not know λ. I

assess performance with bias, mean absolute deviation (as a measure of precision), power at

a 0.05 false positive rate, and the mean value of k̄.19

18This decision rule implies erring on the side of selecting a smaller k̄.
19In some settings, treatment spreads too fast, which leads to implausible or rank-deficient estimates.
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5.2 Results

To facilitate exposition, Figures 4 and 5 report performance in terms of bias and the mean

value of k̄ at select parameter values α = {0.1, 0.4}, γ = {0.5, 1}, and τ = 0.26. Section B

of the appendix reports simulation results in full. Figure 4 shows the bias of the estimator

selected by the proposed supervised learning protocol against the oracle. Since the oracle

knows κ ahead of time, but not the true treatment effect λ, it can produce biased estimates.

Each value in the figure is based on 1,000 simulations. The protocol has similar bias than

the oracle when treatment assignment probability α is low. When α is close to a coin flip

(α = 0.4), the protocol increases in bias with κ. In general, bias is higher when the infection

probability γ is lower, but the difference between the protocol and the oracle as κ increases

under high α is more pronounced when the infection probability γ is deterministic (γ = 1).

Section B of the appendix leads to a similar conclusion for precision and power.

Figure 5 shows the mean of the selected upper bound k̄, this statistic reflects the protocol’s

average guess for κ across simulations. By definition, the oracle always selects the correct

interference upper bound, so the protocol performs better when it resembles the oracle. This

is the case under α = 0.1 and γ = 1. In other scenarios, the protocol tends to overestimate

the upper bound when κ is low, and underestimate it when κ is high. This reversion happens

because at low κ the algorithm is more likely to err on the side of choosing a larger k̄, with

the opposite being the case when κ is high.

To summarize, the simulation exercise suggests that the protocol performs better when a

relatively small proportion of units are assigned to treatment. This finding also appears in

the simulations in Bowers et al. (2018). The underlying intuition is that when too many

units are treated there is not enough information about the outcome of control units to assess

the difference between those exposed to and isolated from treatment. For the same reason,

performance tends to be worse when treatments travel too far, which is captured by κ. If

This occurs in roughly 3% of the simulations (out of a total of 288,000) and happens more often as α and κ
increase. I exclude these from the analysis.
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Figure 4: Comparing bias of the supervised learning model selection protocol
against the oracle
Note: Each value is based on 1,000 simulations. When the treatment assignment probability α is
low, the protocol and oracle have similar bias. When α is high, the bias of the protocol increases
with the true upper bound κ. Bias is higher when the infection rate γ is a coin toss.

Figure 5: Comparing the mean selected upper bound of the supervised learning
model selection protocol against the oracle
Note: Each value is based on 1,000 simulations. By definition the oracle always selects the right
value of the true upper bound κ. In average, the protocol chooses the correct upper bound when
the treatment assignment probability α is low and the infection rate γ is deterministic. Otherwise,
the protocol tends to select a broader upper bound when κ is low and a narrower upper bound
when κ is high.

25



too many units are exposed, then the researcher does not have enough information about

those isolated.

Finally, performance also suffers when treatments spread in a probabilistic way. This is

true for both the protocol and the oracle, which suggests that the problem does not lie in

the supervised learning model selection approach, but rather in the theoretical decision to

commit to the same upper bound across units. Future work may alleviate this problem by

implementing more flexible distance metrics and algorithms that allow the interference upper

bound to vary across units or clusters thereof.

6 Conclusion

This paper proposes a supervised learning model selection approach to study interference

in contexts in which the identification assumptions of current design-based causal inference

approaches cannot be satisfied. In such case, theory still guides modeling decisions, but it

often implies multiple ways to operationalize interference, and the discipline currently lacks a

standard to determine which model is more appropriate. This approach still puts the weight

of justifying causal inference on what the researcher is willing to assume about the pathway

through which interference occurs, but it provides tools to connect theoretical justification

with modeling decisions.

The key intuition of the supervised learning model based approach is that, if the researcher

can express a theory about interference in terms of a distance metric, then the metric can

help in identifying plausible alternative operationalizations, among which the researcher can

select using the algorithm, resampling strategy, and performance metric of choice.

Context-specific considerations aside, the choice of model selection approach depends pri-

marily on two decisions about the estimation target. First, the researcher must determine

whether the goal is to estimate categorical or marginal exposure effects. This informs whether
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to record if a unit is exposed to a treatment condition or not, or to count the number of

units assigned to a treatment condition within a certain range.

Second, the researcher must determine whether the task is to estimate a single global effect,

or multiple local effects at different distance ranges. This informs the type of algorithm.

In the case of a single global effect, the distance metric informs the different values of

the upper bound of a range within which interference occurs, which in turns assists in

identify alternative plausible operationalizations. For multiple local effects, the distance

metric informs the construction of predictors among which the researcher can select using

off-the-shelf algorithms for variable selection.

This paper illustrates the supervised learning model selection approach with simulations and

the reanalysis of an experiment intended to capture interference. Focusing on the case of

estimating the contrast across two exposures in a road network in Ghana, the simulations

suggest that the proposed protocol performs better when a relatively small proportion of

units is treated, when the probability of infection conditional on exposure is deterministic

(as opposed to probabilistic), and when treatments do not spread too far along the theoret-

ically relevant pathways. These conclusions align with previous simulations exercises (e.g.

Bowers et al. 2018), which highlights the appropriateness of the approach. Similarly, the

reanalysis of an experiment on the spillover effect of election observers on voter registration

irregularities in Ghana (Ichino and Schündeln 2012) shows how the lasso-family of algorithms

select models that lead to estimates that resemble the original findings, which also validates

the usefulness of the approach in cases where the experimental structure was not designed

to detect interference.

The simulations and reanalysis focus on model selection using cross-validation and the lasso

family of methods, respectively. Similarly, the focus on the estimation side is on inverse

probability weighted difference-in-means (Aronow and Samii 2017) and conventional design-

based estimators for experimental data. However, the ideas in this paper are general enough
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to accommodate for other model selection algorithms and estimation approaches.

A limitation of this approach is that it does not suit hypothesis testing approaches to in-

terference. For example, the key intuition in Bowers, Fredrickson, and Panagopoulos (2013)

is that we can test hypotheses about a range of parameter values in a theoretical model of

interference. Supervised learning algorithms for variable selection operate under the assump-

tion that a true effect exists and can be detected, even if unknown to the researcher. Testing

approaches follow the idea that we can compute uncertainty for a range of hypothetical

parameter values.

Future work should acknowledge this difference and develop standards to select among com-

peting models in the context of hypothesis testing approaches to interference. Another area

for future development is to develop guidelines on how to choose the appropriate distance

metric. For example, the reanalysis of an experiment on the effect of election observers on

voter registration irregularities in Ghana follows the authors’ decision to count the number

of treated units within 5 kilometer bins. However, in novel applications the choice of the

number and size of bins (or whether to use bins at all) might be consequential for both the

applicability and performance of a supervised learning algorithm.

Finally, future work should apply the ideas of the supervised learning model selection ap-

proach to the task of comparing the appropriateness of multiple plausible theoretical path-

ways. In such a case, the challenge is not only to determine which one is more appropriate,

but also to assess and interpret whether alternative pathways are complementary.

References

Aronow, Peter M. 2012. “A General Method for Detecting Interference Between Units

in Randomized Experiments.” Sociological Methods & Research 41 (1): 3–16. https:

//doi.org/10.1177/0049124112437535.

28

https://doi.org/10.1177/0049124112437535
https://doi.org/10.1177/0049124112437535


Aronow, Peter M., Dean Eckles, Cyrus Samii, and Stephanie Zonszein. 2021. “Spillover

Effects in Experimental Data.” In Advances in Experimental Political Science, 289–319.

Cambridge University Press. https://doi.org/10.1017/9781108777919.021.

Aronow, Peter M., and Joel A. Middleton. 2013. “A Class of Unbiased Estimators of the

Average Treatment Effect in Randomized Experiments.” Journal of Causal Inference 1

(1): 135–54. https://doi.org/10.1515/jci-2012-0009.

Aronow, Peter M., and Cyrus Samii. 2017. “Estimating Average Causal Effects Under

General Interference, with Application to a Social Network Experiment.” The Annals of

Applied Statistics 11 (4): 1912–47. https://doi.org/10.1214/16-aoas1005.

Aronow, Peter M., Cyrus Samii, and Ye Wang. 2020. “Design-Based Inference for Spatial

Experiments with Interference,” October. http://arxiv.org/abs/2010.13599.

Asunka, Joseph, Sarah Brierley, Miriam Golden, Eric Kramon, and George Ofosu. 2017.

“Electoral Fraud or Violence: The Effect of Observers on Party Manipulation Strategies.”

British Journal of Political Science 49 (1): 129–51. https://doi.org/10.1017/s000712341

6000491.

Athey, Susan, Dean Eckles, and Guido W. Imbens. 2018. “Exact p-Values for Network

Interference.” Journal of the American Statistical Association 113 (521): 230–40. https:

//doi.org/10.1080/01621459.2016.1241178.

Baird, Sarah, J. Aislinn Bohren, Craig McIntosh, and Berk Özler. 2018. “Optimal Design

of Experiments in the Presence of Interference.” The Review of Economics and Statistics

100 (5): 844–60. https://doi.org/10.1162/rest_a_00716.

Basse, Guillaume W., Avi Feller, and Panos Toulis. 2019. “Randomization Tests of Causal

Effects Under Interference.” Biometrika 106 (2): 487–94. https://doi.org/10.1093/biom

et/asy072.

Belloni, Alexandre, and Victor Chernozhukov. 2013. “Least Squares After Model Selection

29

https://doi.org/10.1017/9781108777919.021
https://doi.org/10.1515/jci-2012-0009
https://doi.org/10.1214/16-aoas1005
http://arxiv.org/abs/2010.13599
https://doi.org/10.1017/s0007123416000491
https://doi.org/10.1017/s0007123416000491
https://doi.org/10.1080/01621459.2016.1241178
https://doi.org/10.1080/01621459.2016.1241178
https://doi.org/10.1162/rest_a_00716
https://doi.org/10.1093/biomet/asy072
https://doi.org/10.1093/biomet/asy072


in High-Dimensional Sparse Models.” Bernoulli 19 (2): 521–47. https://doi.org/10.315

0/11-bej410.

Belloni, Alexandre, Victor Chernozhukov, and Christian Hansen. 2013. “Inference on Treat-

ment Effects After Selection Among High-Dimensional Controls.” The Review of Eco-

nomic Studies 81 (2): 608–50. https://doi.org/10.1093/restud/rdt044.

Benjamini, Yoav, and Daniel Yekutieli. 2005. “False Discovery Rateadjusted Multiple Confi-

dence Intervals for Selected Parameters.” Journal of the American Statistical Association

100 (469): 71–81. https://doi.org/10.1198/016214504000001907.

Bergstra, James, and Yoshua Bengio. 2021. “Random Search for Hyper-Parameter Opti-

mization.” Journal of Machine Learning Research 13 (10): 281–305. http://jmlr.org/p

apers/v13/bergstra12a.html.

Blakely, Tony, John Lynch, Koen Simons, Rebecca Bentley, and Sherri Rose. 2019. “Re-

flection on Modern Methods: When Worlds Collide - Prediction, Machine Learning and

Causal Inference.” International Journal of Epidemiology, July. https://doi.org/10.109

3/ije/dyz132.

Bleich, Justin, Adam Kapelner, Edward I. George, and Shane T. Jensen. 2014. “Variable Se-

lection for BART: An Application to Gene Regulation.” The Annals of Applied Statistics

8 (3): 1750–81. https://doi.org/10.1214/14-aoas755.

Bloniarz, Adam, Hanzhong Liu, Cun-Hui Zhang, Jasjeet S. Sekhon, and Bin Yu. 2016.

“Lasso Adjustments of Treatment Effect Estimates in Randomized Experiments.” Pro-

ceedings of the National Academy of Sciences 113 (27): 7383–90. https://doi.org/10.107

3/pnas.1510506113.

Bowers, Jake, Bruce A. Desmarais, Mark Frederickson, Nahomi Ichino, Hsuan-Wei Lee, and

Simi Wang. 2018. “Models, Methods and Network Topology: Experimental Design for

the Study of Interference.” Social Networks 54 (July): 196–208. https://doi.org/10.101

30

https://doi.org/10.3150/11-bej410
https://doi.org/10.3150/11-bej410
https://doi.org/10.1093/restud/rdt044
https://doi.org/10.1198/016214504000001907
http://jmlr.org/papers/v13/bergstra12a.html
http://jmlr.org/papers/v13/bergstra12a.html
https://doi.org/10.1093/ije/dyz132
https://doi.org/10.1093/ije/dyz132
https://doi.org/10.1214/14-aoas755
https://doi.org/10.1073/pnas.1510506113
https://doi.org/10.1073/pnas.1510506113
https://doi.org/10.1016/j.socnet.2018.01.010
https://doi.org/10.1016/j.socnet.2018.01.010


6/j.socnet.2018.01.010.

Bowers, Jake, Mark M. Fredrickson, and Costas Panagopoulos. 2013. “Reasoning about

Interference Between Units: A General Framework.” Political Analysis 21 (1): 97–124.

https://doi.org/10.1093/pan/mps038.

Breiman, Leo. 2001. “Random Forests.” Machine Learning 45 (1): 5–32. https://doi.org/

10.1023/a:1010933404324.

Candès, Emmanuel J. 2006. “Modern Statistical Estimation via Oracle Inequalities.” Acta

Numerica 15 (May): 257–325. https://doi.org/10.1017/s0962492906230010.

Casella, George, Malay Ghosh, Jeff Gill, and Minjung Kyung. 2010. “Penalized Regression,

Standard Errors, and Bayesian Lassos.” Bayesian Analysis 5 (2). https://doi.org/10.121

4/10-ba607.

Coppock, Alexander. 2014. “Information Spillovers: Another Look at Experimental Es-

timates of Legislator Responsiveness.” Journal of Experimental Political Science 1 (2):

159–69. https://doi.org/10.1017/xps.2014.9.

Cox, David R. 1958. Planning of Experiments. New York: Wiley.

Egami, Naoki. 2020. “Spillover Effects in the Presence of Unobserved Networks.” Political

Analysis, November, 1–30. https://doi.org/10.1017/pan.2020.28.

Fan, Jianqing, and Runze Li. 2001. “Variable Selection via Nonconcave Penalized Likelihood

and Its Oracle Properties.” Journal of the American Statistical Association 96 (456):

1348–60. https://doi.org/10.1198/016214501753382273.

Halloran, M. Elizabeth, and Michael G. Hudgens. 2016. “Dependent Happenings: A Recent

Methodological Review.” Current Epidemiology Reports 3 (4): 297–305. https://doi.or

g/10.1007/s40471-016-0086-4.

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. 2009. The Elements of Statistical

31

https://doi.org/10.1016/j.socnet.2018.01.010
https://doi.org/10.1016/j.socnet.2018.01.010
https://doi.org/10.1093/pan/mps038
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1017/s0962492906230010
https://doi.org/10.1214/10-ba607
https://doi.org/10.1214/10-ba607
https://doi.org/10.1017/xps.2014.9
https://doi.org/10.1017/pan.2020.28
https://doi.org/10.1198/016214501753382273
https://doi.org/10.1007/s40471-016-0086-4
https://doi.org/10.1007/s40471-016-0086-4


Learning. New York: Springer.

Holland, Paul W. 1986. “Statistics and Causal Inference.” Journal of the American Statistical

Association 81 (396): 945–60. https://doi.org/10.1080/01621459.1986.10478354.

Hollenbach, Florian M., and Jacob M. Montgomery. 2020. “Bayesian Model Selection, Model

Comparison, and Model Averaging.” In The SAGE Handbook of Research Methods in

Political Science and International Relations, 937–60. SAGE Publications Ltd. https:

//doi.org/10.4135/9781526486387.n52.

Hudgens, Michael G, and M. Elizabeth Halloran. 2008. “Toward Causal Inference with

Interference.” Journal of the American Statistical Association 103 (482): 832–42. https:

//doi.org/10.1198/016214508000000292.

Ichino, Nahomi, and Matthias Schündeln. 2012. “Deterring or Displacing Electoral Irreg-

ularities? Spillover Effects of Observers in a Randomized Field Experiment in Ghana.”

The Journal of Politics 74 (1): 292–307. https://doi.org/10.1017/s0022381611001368.

Keele, Luke, and Rocío Titiunik. 2018. “Geographic Natural Experiments with Interference:

The Effect of All-Mail Voting on Turnout in Colorado.” CESifo Economic Studies 64 (2):

127–49. https://doi.org/10.1093/cesifo/ify004.

Nickerson, David W. 2008. “Is Voting Contagious? Evidence from Two Field Experiments.”

American Political Science Review 102 (1): 49–57. https://doi.org/10.1017/s000305540

8080039.

Ogburn, Elizabeth L., and Tyler J. VanderWeele. 2014. “Causal Diagrams for Interference.”

Statistical Science 29 (4). https://doi.org/10.1214/14-sts501.

Paluck, Elizabeth Levy, Hana Shepherd, and Peter M. Aronow. 2016. “Changing Climates

of Conflict: A Social Network Experiment in 56 Schools.” Proceedings of the National

Academy of Sciences 113 (3): 566–71. https://doi.org/10.1073/pnas.1514483113.

32

https://doi.org/10.1080/01621459.1986.10478354
https://doi.org/10.4135/9781526486387.n52
https://doi.org/10.4135/9781526486387.n52
https://doi.org/10.1198/016214508000000292
https://doi.org/10.1198/016214508000000292
https://doi.org/10.1017/s0022381611001368
https://doi.org/10.1093/cesifo/ify004
https://doi.org/10.1017/s0003055408080039
https://doi.org/10.1017/s0003055408080039
https://doi.org/10.1214/14-sts501
https://doi.org/10.1073/pnas.1514483113


Ratkovic, Marc, and Dustin Tingley. 2017. “Sparse Estimation and Uncertainty with Ap-

plication to Subgroup Analysis.” Political Analysis 25 (1): 1–40. https://doi.org/10.101

7/pan.2016.14.

Rubin, Donald B. 1990. “Formal Models of Statistical Inference for Causal Effects.” Journal

of Statistical Planning and Inference 25 (3): 279–92. https://doi.org/10.1016/0378-

3758(90)90077-8.

Sävje, Fredrik. 2019. “Causal Inference with Misspecified Exposure Mappings.” Working

Paper. https://fredriksavje.com/papers/misspecified-exposures.pdf.

Sävje, Fredrik, Peter M. Aronow, and Michael G. Hudgens. 2019. “Average Treatment

Effects in the Presence of Unknown Interference.” http://arxiv.org/abs/1711.06399.

Sinclair, Betsy, Margaret McConnell, and Donald P. Green. 2012. “Detecting Spillover

Effects: Design and Analysis of Multilevel Experiments.” American Journal of Political

Science 56 (4): 1055–69. https://doi.org/10.1111/j.1540-5907.2012.00592.x.

Sobel, Michael E. 2006. “What Do Randomized Studies of Housing Mobility Demonstrate?”

Journal of the American Statistical Association 101 (476): 1398–1407. https://doi.org/

10.1198/016214506000000636.

Speiser, Jaime Lynn, Michael E. Miller, Janet Tooze, and Edward Ip. 2019. “A Comparison

of Random Forest Variable Selection Methods for Classification Prediction Modeling.”

Expert Systems with Applications 134 (November): 93–101. https://doi.org/10.1016/j.es

wa.2019.05.028.

Tibshirani, Robert. 1996. “Regression Shrinkage and Selection via the Lasso.” Journal of

the Royal Statistical Society: Series B (Methodological) 58 (1): 267–88. https://doi.org/

10.1111/j.2517-6161.1996.tb02080.x.

Toulis, Panos, and Edward Kao. 2013. “Estimation of Causal Peer Influence Effects.”

Proceedings of the 30th International Conference on Machine Learning 3 (28): 1489–97.

33

https://doi.org/10.1017/pan.2016.14
https://doi.org/10.1017/pan.2016.14
https://doi.org/10.1016/0378-3758(90)90077-8
https://doi.org/10.1016/0378-3758(90)90077-8
https://fredriksavje.com/papers/misspecified-exposures.pdf
http://arxiv.org/abs/1711.06399
https://doi.org/10.1111/j.1540-5907.2012.00592.x
https://doi.org/10.1198/016214506000000636
https://doi.org/10.1198/016214506000000636
https://doi.org/10.1016/j.eswa.2019.05.028
https://doi.org/10.1016/j.eswa.2019.05.028
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x


http://proceedings.mlr.press/v28/toulis13.html.

Zou, Hui. 2006. “The Adaptive Lasso and Its Oracle Properties.” Journal of the American

Statistical Association 101 (476): 1418–29. https://doi.org/10.1198/0162145060000007

35.

34

http://proceedings.mlr.press/v28/toulis13.html
https://doi.org/10.1198/016214506000000735
https://doi.org/10.1198/016214506000000735

	Introduction
	Causal Inference Approaches to Interference
	Setting
	Interference as contrast across exposures
	Stratified interference

	A Model Selection Approach
	Application
	Election observers and voting registration irregularities in Ghana
	Lasso model selection
	Results

	Simulation
	Setup
	Results

	Conclusion
	References

